Tom 12 (2015)
Przekłady

Biologia systemowa jako program badawczy teorii inteligentnego projektu

Opublikowane 24.05.2021

Słowa kluczowe

  • paradygmat biologii systemowej,
  • inżynieria,
  • darwinizm,
  • podejście oddolne,
  • podejście odgórne,
  • projekt,
  • teleologia,
  • informacja,
  • optymalizacja
  • ...więcej
    mniej

Jak cytować

Snoke D.W., Biologia systemowa jako program badawczy teorii inteligentnego projektu, Filozoficzne Aspekty Genezy, 2021, t. 12, s. 255-285, https://doi.org/10.53763/fag.2015.12.117

Abstrakt

Przeciwnicy teorii inteligentnego projektu argumentowali czasem, że jej podejście do biologii zniechęca do prowadzenia badań naukowych. Można jednak pokazać, że najpłodniejszy nowy paradygmat biologii systemowej jest w istocie znacznie spójniejszy z przekonaniem o inteligentnym zaprojektowaniu życia niż przekonanie o neodarwinowskiej ewolucji. W ramach tego nowego paradygmatu biologii systemowej, który powstał i rozwijał się przez mniej więcej ostatnie dziesięć lat, układy ożywione analizowane są przy wykorzystaniu pojęć zaczerpniętych z inżynierii systemów, takich jak projekt, przetwarzanie informacji, optymalizacja oraz inne jawnie teleologiczne pojęcia. Paradygmat ten oferuje odnoszącą sukcesy, umożliwiającą formułowanie ilościowych przewidywań teorię biologiczną. Mimo że główni przedstawiciele tej dyscypliny uznają układy biologiczne za wytwór doboru naturalnego, to nie potrafią uniknąć używania języka projektu i koncepcji projektowych w swoich badaniach, a już nawet pobieżne spojrzenie na biologię systemową skłania do wniosku, że naprawdę przyjmuje ona całkowicie projektowe podejście.

Pobrania

Brak dostęþnych danych do wyświetlenia.

Bibliografia

  1. Forrest B. and Gross P.R., Creationism’s Trojan Horse, Oxford University Press, Oxford 2004. "Snoke David W.
    Zobacz w Google Scholar
  2. University of Pittsburgh, snoke@pitt.edu"
    Zobacz w Google Scholar
  3. Snoke D., In Favor of God-of-the-Gaps Reasoning, Perspectives on Science and Christian Faith 2001, vol. 53, s. 152-158.
    Zobacz w Google Scholar
  4. Meyer S., Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design, HarperCollins, New York 2013.
    Zobacz w Google Scholar
  5. Behe M., The Edge of Evolution: The Search for the Limits of Evolution, Free Press, New York 2007.
    Zobacz w Google Scholar
  6. Kirschner M.W. and Gerhart J.C., The Plausibility of Life: Resolving Darwin’s Dilemma, Yale University Press, New Haven 2005.
    Zobacz w Google Scholar
  7. Bergman J., The Functions of Introns: From Junk DNA to Designed DNA, Perspectives on Science and Christian Faith 2001, vol. 53, s. 170-178.
    Zobacz w Google Scholar
  8. Wells J., The Myth of Junk DNA, Discovery Institute, Seattle 2011.
    Zobacz w Google Scholar
  9. Ghose T., «Junk» DNA Mystery Solved: It’s Not Needed, LiveScience 12 May 2013, http://www.livescience.com/31939-junk-dna-mystery-solved.html (25.09.2015).
    Zobacz w Google Scholar
  10. Gould S.J., The Panda’s Thumb: More Reflections in Natural History, W.W. Norton, New York 1980.
    Zobacz w Google Scholar
  11. Barrow J.D. and . Tipler F.J., The Anthropic Cosmological Principle, Oxford University Press, Oxford 1988.
    Zobacz w Google Scholar
  12. Mishra B., Intelligently Deciphering Unintelligible Designs: Algorithmic Algebraic Model Checking in Systems Biology, Journal of The Royal Society Interface 2009, vol. 6, s. 575- 597, doi: 10.1098/rsif.2008.0546.
    Zobacz w Google Scholar
  13. Koeppl K. and Setti G., Analysis and Design of Biological Circuits and Systems, IEEE International Symposium on Circuits and Systems 2009, s. 297-300, doi: 10.1109/ISCAS.2009.5117744.
    Zobacz w Google Scholar
  14. Allarakhia M. and Wensley A., Systems Biology: A Disruptive Biopharmaceutical Research Paradigm, Technological Forecasting and Social Change 2007, vol. 74, s. 1643-1660, doi: 10.1016/j.techfore.2006.07.012.
    Zobacz w Google Scholar
  15. Kitano H., Computational Systems Biology, Nature 2002, vol. 420, s. 206-210, doi: 10.1038/nature01254.
    Zobacz w Google Scholar
  16. Conti F., Valerio M.C., Zbilut J.P., and Giuliani A., Will Systems Biology Offer New Holistic Paradigms to Life Sciences?, Systems and Synthetic Biology 2007, vol. 1, s. 161-165, doi: 10.1007/s11693-008-9016-1.
    Zobacz w Google Scholar
  17. Engl H.W., Flamm C., Kugler P. , LU J., Muller S., and Schuster P., Inverse Problems in Systems Biology, Inverse Problems 2009, vol. 25, s. 123014, doi: 10.1088/0266-5611/25/12/123014.
    Zobacz w Google Scholar
  18. Gatherer D., So What Do We Really Mean When We Say That Systems Biology Is Holistic?, BMC Systems Biology 2010, vol. 4, s. 22, doi: 10.1186/1752-0509-4-22.
    Zobacz w Google Scholar
  19. Rushmer R., All Systems Go [System Biology], Professional Engineering 2007, vol. 20, s. 37-38.
    Zobacz w Google Scholar
  20. Nicolis G. and Prigogine I., Self-Organization in Non-Equilibrium Systems. Dissipative Structures to Order through Fluctuations, John Wiley and Sons, New York 1977.
    Zobacz w Google Scholar
  21. Prigogine I. i Stengers I., Z chaosu ku porządkowi. Nowy dialog człowieka z przyrodą, przeł. Katarzyna Lipszyc, Biblioteka Myśli Współczesnej, Państwowy Instytut Wydawniczy, Warszawa 1990.
    Zobacz w Google Scholar
  22. Morange M., The Death of Molecular Biology?, History and Philosophy of the Life Sciences 2008, vol. 30, s. 31-42.
    Zobacz w Google Scholar
  23. Rheinberger H.-J., What Happened to Molecular Biology?, BioSocieties 2008, vol. 3, s. 303-310, doi: 10.1017/S1745855208006212.
    Zobacz w Google Scholar
  24. Keller E.F., A Clash of Two Cultures, Nature 2007, vol. 445, s. 603, doi: 10.1038/445603a.
    Zobacz w Google Scholar
  25. Wolkenhauer O. and Mesarovic M., Feedback Dynamics and Cell Function: Why Systems Biology Is Called Systems Biology, Molecular BioSystems 2005, vol. 1, s. 14-16, doi: 10.1039/B502088N.
    Zobacz w Google Scholar
  26. Kadanoff L.P., Hip Bone Is Connected to... II, Physics Today 2009, vol. 62, s. 8-9, doi: 10.1063/1.3099588.
    Zobacz w Google Scholar
  27. Tu K.C., Long T., Svenningsen S.L., Wingreen N.S., and Bassier B.L., Negative Feedback Loops Involving Small Regulatory RNAs Precisely Control the Vibrio harveyi Quorum-Sensing Response, Molecular Cell 2010, vol. 37, s. 567-579, doi: 10.1016/j.molcel.2010.01.022.
    Zobacz w Google Scholar
  28. Zhang Y.B., Chen K., Wang J., Chen A., Zhou and T., Positive Feedback-Assisted Short/Long-Range Cell Signalings in MAPK Cascades, International Journal of Modern Physics C 2009, vol. 20, s. 1769-1787, doi: 10.1142/S0129183109014722.
    Zobacz w Google Scholar
  29. Hansen C.H., Endres R.G., and Wingreen N.S., Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation, PLoS Computational Biology 2008, vol. 4, s. e1, doi: 10.1371/journal.pcbi.0040001.
    Zobacz w Google Scholar
  30. Endres R.G. and Wingreen N.S., Precise Adaptation in Bacterial Chemotaxis Through «Assistance Neighborhoods», Proceedings of the National Academy of Sciences USA 2006, vol. 103, s. 13040-13044, doi: 10.1073/pnas.0603101103.
    Zobacz w Google Scholar
  31. Li Y.X. and Goldbeter A., Pulsatile Signaling in Intercellular Communication — Periodic Stimuli Are More Efficient than Random or Chaotic Signals in a Model Based on Receptor Desensitization, Biophysical Journal 1992, vol. 61, s. 161-171, doi: 10.1016/S0006-3495(92)81824-6.
    Zobacz w Google Scholar
  32. Marhl M. and Grubelnik V., Role of Cascades in Converting Oscillatory Signals into Stationary Step-Like Responses, Biosystems 2007, vol. 87, s. 58-67, doi: 10.1016/j.biosystems.2006.03.004.
    Zobacz w Google Scholar
  33. Goldbeter A., Oscillations and Waves of Cyclic AMP in Dicyostelium: A Prototype for Spatio-Temporal Organization and Pulsatile Intercellular Communication, Bulletin of Mathematical Biology 2006, vol. 68, s. 1095-1109, doi: 10.1007/s11538-006-9090-z.
    Zobacz w Google Scholar
  34. Wei C.L., Wang X.H., Chen M., Ouyang K.F., Zheng M., and Cheng H.P., Flickering Calcium Microdomains Signal Turning of Migrating Cells, Canadian Journal of Physiology and Pharmacology 2010, vol. 88, s. 105-110, doi: 10.1139/Y09-118.
    Zobacz w Google Scholar
  35. Stevense M., Muramoto T., Muller I., and Chubb J.R., Digital Nature of the Immediate-Early Transcriptional Response, Development 2010, vol. 137, s. 579-584, doi: 10.1242/dev.043836.
    Zobacz w Google Scholar
  36. Ni T.C. and Savageau M.A., Application of Biochemical Systems Theory to Metabolism in Human Red Blood Cells — Signal Propagation and Accuracy of Representation, The Journal of Biological Chemistry 1996, vol. 271, s. 7927-7941, doi: 10.1074/jbc.271.14.7927.
    Zobacz w Google Scholar
  37. Pattee H.H., Epistemic, Evolutionary, and Physical Conditions for Biological Information, Biosemiotics 2013, vol. 6, s. 9-31, doi: 10.1007/s12304-012-9150-8.
    Zobacz w Google Scholar
  38. Meyer S., Signature in the Cell, HarperCollins, New York 2009.
    Zobacz w Google Scholar
  39. Vincent J.F.V., Bogatyreva O., and Bogatyrev N., Biology Doesn’t Waste Energy: That’s Really Smart, Proceedings of SPIE 2006, vol. 6168, s. 616801, doi: 10.1117/12.682174.
    Zobacz w Google Scholar
  40. Bialek W., Optimizing Information Flow in Biological Networks, Bulletin of the American Physical Society 2009, vol. 54, s. W7/1.
    Zobacz w Google Scholar
  41. Allarakhia M. and Wensley A., Systems Biology: Melting the Boundaries in Drug Discovery Research. Technology Management: A Unifying Discipline for Melting the Boundaries, IEEE 2005, Cat. No. 05CH37666, s. 262-274, doi: 10.1109/PICMET.2005.1509700.
    Zobacz w Google Scholar
  42. Kolch W., Defining Systems Biology: Through the Eyes of a Biochemist, IET Systems Biology 2008, vol. 2, s. 5-7, doi: 10.1049/iet-syb:20070060.
    Zobacz w Google Scholar
  43. Aubel D. and Fussenegger M., Watch the Clock — Engineering Biological Systems to Be on Time, Current Opinion in Genetics & Development 2010, vol. 20, s. 634-643, doi: 10.1016/j.gde.2010.09.003.
    Zobacz w Google Scholar
  44. Di Cara F. and King -Jones K., How Clocks and Hormones Act in Concert to Control the Timing of Insect Development, w: A.E. Rougvie and M.B. O’Connor (eds.), Current Topics in Developmental Biology ,vol. 105, Academic Press, New York 2013, s. 1-36, doi: 10.1016/B978-0-12-396968-2.00001-4.
    Zobacz w Google Scholar
  45. Robinet P., Mollet L., Gonzalez P., Normand T., Charpentier S. et al., The Mitogaligin Protein Is Addressed to the Nucleus via a Non-Classical Localization Signal, Biochemical and Biophysical Research Communications 2010, vol. 392, s. 53-57, doi: 10.1016/j.bbrc.2009.12.162.
    Zobacz w Google Scholar
  46. Kerszberg M., Genes, Neurons and Codes: Remarks on Biological Communication, Bioessays 2003, vol. 25, s. 699-708, doi: 10.1002/bies.10304.
    Zobacz w Google Scholar
  47. Soza A., Norambuena A., Cancino J., De La Fuente E., Henklein P., and Gonzalez A., Sorting Competition with Membrane-Permeable Peptides in Intact Epithelial Cells Revealed Discrimination of Transmembrane Proteins Not Only at the Trans-Golgi Network But Also at Pre-Golgi Stages, The Journal of Biological Chemistry 2004, vol. 279, s. 17376-17383, doi: 10.1074/jbc.M313197200.
    Zobacz w Google Scholar
  48. Mileyko Y., Edelsbrunner H., Price C.A., and Weitz J.S., Hierarchical Ordering of Reticular Networks, PLoS One 2012, vol. 7, s. e36715, doi: 10.1371/journal.pone.0036715.
    Zobacz w Google Scholar
  49. Subramaniam R. and Rampitsch C., Towards Systems Biology of Mycotoxin Regulation, Toxins 2013, vol. 5, s. 675-682, doi: 10.3390/toxins5040675.
    Zobacz w Google Scholar
  50. Bertolaso M., Breaking Down Levels of Biological Organization, Theoretical Biology Forum 2013, vol. 106, s. 49-71.
    Zobacz w Google Scholar
  51. Edelman G.M. and Galy J.A., Degeneracy and Complexity in Biological Systems, Proceedings of the National Academy of Sciences USA 2001, vol. 98, s. 13763-13768, doi: 10.10 73/pnas.231499798.
    Zobacz w Google Scholar
  52. Whitacre J. and Bender A., Degeneracy: A Design Principle for Achieving Robustness and Evolvability, Journal of Theoretical Biology 2010, vol. 263, s. 143-153, doi: 10.1016/j.jtbi.2009.11.008.
    Zobacz w Google Scholar
  53. Shapiro J., Evolution: A View From the 21st Century, FT Press/Pearson, Upper Saddle River, New Jersey 2011.
    Zobacz w Google Scholar
  54. Deem M., Life Has Evolved to Evolve, Bulletin of the American Physical Society 2006, vol. 51, s. R7/2.
    Zobacz w Google Scholar
  55. Lander A.D., A Calculus of Purpose, PLoS Biology 2004, vol. 2, s. e164, doi: 10.1371/journal.pbio.0020164.
    Zobacz w Google Scholar
  56. Tkacik G., Callan G.G., and Bialek W., Information Flow and Optimization in Transcriptional Regulation, Proceedings of the National Academy of Sciences USA 2008, vol. 105, s. 12265-12270, doi: 10.1073/pnas.0806077105.
    Zobacz w Google Scholar
  57. Balsa-Canto E. and Banga J.R., Amigo, a Toolbox for Advanced Model Identification in Systems Biology Using Global Optimization, Bioinformatics 2011, vol. 27, s. 2311-2313, doi: 10.1093/bioinformatics/btr370.
    Zobacz w Google Scholar
  58. Balsa-Canto E., Banga J.R., Egea J.A., Fernandez-Villa-Verde A., and De Hijas-Liste G.M., Global Optimization in Systems Biology: Stochastic Methods and Their Applications, w: I.I. Goryanin and A.B. Goryachev (eds.), Advances in Systems Biology, Advances in Experimental Medicine and Biology, vol. 736, Springer, Berlin 2012, s. 409- 424, doi: 10.1007/978-1-4419-7210-1_24.
    Zobacz w Google Scholar
  59. Banga J.R., Optimization in Computational Systems Biology, BMC Systems Biology 2008, vol. 2, s. 47, doi: 10.1186/1752-0509-2-47.
    Zobacz w Google Scholar
  60. Avise J.C., Inside the Human Genome: A Case for Non-Intelligent Design, Oxford University Press, Oxford 2010.
    Zobacz w Google Scholar
  61. Snoke D.W., Jak w zaprojektowanym Wszechświecie zdefiniować to, co niezaprojektowane”, przeł. Dariusz Sagan, Filozoficzne Aspekty Genezy 2009/2010, t. 6/7, s. 117-137, http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2009-2010.t.6-7/art.09.pdf (29.09.2015).
    Zobacz w Google Scholar
  62. Csete M.E. and Doyle J.C., Reverse Engineering of Biological Complexity, Science 2002, vol. 295, s. 1664-1669, doi: 10.1126/science.1069981.
    Zobacz w Google Scholar
  63. Zoppoli P., Morganella S., and Ceccarelli M., TimeDelay-ARACNE: Reverse Engineering of Gene Networks from Time-Course Data by an Information Theoretic Approach, BMC Bioinformatics 2010, vol. 11, s. 154, doi: 10.1186/1471-2105-11-154.
    Zobacz w Google Scholar
  64. Polstra S., Pronk T.E., Pimentel A.D., and Breit T.M., Towards Design Space Exploration for Biological Systems, Journal of Computers 2008, vol. 3, s. 1-9, doi: 10.4304/jcp.3.2.1-9.
    Zobacz w Google Scholar
  65. Brander J., Bio-Inspiration Not Bio-Imitation, Proceedings of SPIE 2008, vol. 6964, s. 696403, doi: 10.1117/12.771762.
    Zobacz w Google Scholar
  66. Braillard P.-A., Systems Biology and the Mechanistic Framework, History and Philosophy of the Life Sciences 2010, vol. 32, s. 43-62.
    Zobacz w Google Scholar
  67. Soyer O.S., The Promise of Evolutionary Systems Biology: Lessons from Bacterial Chemotaxis, Science Signaling 2010, vol. 39, s. pe23, doi: 10.1126/scisignal/3128pe23.
    Zobacz w Google Scholar
  68. Crick F., What Mad Pursuit, Basic Books, New York 1990.
    Zobacz w Google Scholar
  69. Dawkins R., Ślepy zegarmistrz, czyli jak ewolucja dowodzi, że świat nie został zaplanowany, przeł. Antoni Hoffman, Biblioteka Myśli Współczesnej, Państwowy Instytut Wydawniczy, Warszawa 1994.
    Zobacz w Google Scholar
  70. Tanaka R., Csete M., and Doyle J., Highly Optimised Global Organisation of Metabolic Networks, IEEE Proceedings in Systems Biology 2005, vol. 152, s. 179-184, doi: 10.1049/ip-syb:20050042.
    Zobacz w Google Scholar
  71. Nussinov R. and Aleman C., Nanobiology: From Physics and Engineering to Biology, Physical Biology 2006, vol. 3, s. 2, doi: 10.1088/1478-3967/3/1/E01.
    Zobacz w Google Scholar
  72. Arkin A., Playing Practical Games with Bacteria and Viruses: Exploring the Molecular Mechanisms Behind Clever Cellular Stratagems, w: Bio-, Micro-, and Nanosystems 2003: ASM Conferences (IEEE), s. 12, doi: 10.1109/BMN.2003.1220594.
    Zobacz w Google Scholar
  73. Boyle R., Disquisition about the Final Causes of Natural Things, w: Works of Robert Boyle, vol. 5, Pickering and Chatto, London 1999.
    Zobacz w Google Scholar
  74. Harvey W., Dr. Ent’s Epistle Dedicatory to the Exertationes de Generatione Animalium, w: Works of William Harvey, Syndenham Society, London 1847.
    Zobacz w Google Scholar
  75. Miller K., Only a Theory: Evolution and the Battle for America’s Soul, Viking, New York 2008, s. 37, 96-97.
    Zobacz w Google Scholar
  76. Kitcher P., Living with Darwin, Oxford University Press, Oxford 2007.
    Zobacz w Google Scholar
  77. Ecker J.R., Serving Up a Genome Feast, Nature 2012, vol. 489, s. 52-55, doi: 10.1038/489052a.
    Zobacz w Google Scholar
  78. Barroso I., Non-Coding But Functional, Nature 2012, vol. 489, s. 52-55, doi: 10.1038/489052a.
    Zobacz w Google Scholar
  79. Shapiro J.A., Bob Dylan, Encode, and Evolutionary Theory: The Times They Are A-Changin’, Huffington Post 9 December 2012, http://www.huffingtonpost.com/james-a-shapiro/bob-dylan-encode-and-evol_b_1873935.html (30.09.2015).
    Zobacz w Google Scholar
  80. Ibarra-Laclette E., Lyons E., Hernan- Dez-Guzman G., ANAHI Perez-Torres C., Carretero-Paulet L. et al., Architecture and Evolution of a Minute Plant Genome, Nature 2013, vol. 498, s. 94-98, doi: 10.1038/nature12132.
    Zobacz w Google Scholar
  81. Hunter C.G., Darwin’s God: Evolution and the Problem of Evil, Brazos Press, Ada, Michigan 2001.
    Zobacz w Google Scholar
  82. Stafford R., Crossing Fitness Valleys During the Evolution of Limpet Homing Behaviour, Central European Journal of Biology 2009, vol. 5, s. 274-282, doi: 10.2478/s11535-010-0001-9.
    Zobacz w Google Scholar