Tom 15 (2018)
Przekłady

Nowe idee w biologii ewolucyjnej: od NDMS do EES

Opublikowane 25.05.2021

Słowa kluczowe

  • nowoczesna synteza neodarwinowska,
  • rozszerzona synteza ewolucyjna,
  • naturalna inżynieria genetyczna,
  • mutacje warunkowane środowiskowo,
  • ewolucyjna biologia rozwoju,
  • sieci regulatorowe genów,
  • konwergencja,
  • tworzenie nisz,
  • teleologia,
  • teleonomia
  • ...więcej
    mniej

Jak cytować

Garte S., Nowe idee w biologii ewolucyjnej: od NDMS do EES, Filozoficzne Aspekty Genezy, 2021, t. 15, s. 415-440, https://doi.org/10.53763/fag.2018.15.156

Abstrakt

Nowoczesna synteza neodarwinowska (NDMS — neo-Darwinian modern synthesis) przez kilkadziesiąt lat stanowiła podstawę teorii ewolucji. Okazało się jednak, że NDMS ma swoje ograniczenia, a jej ustalenia są nieaktualne w odniesieniu do różnych obszarów badań biologicznych. Nowa, rozszerzona synteza ewolucyjna (EES — extended evolutionary synthesis), uwzględniająca bardziej złożone interakcje między genomami, komórkami a środowiskiem, umożliwia ponowną ocenę wielu założeń NDMS. Do standardowego paradygmatu zakładającego, że głównym mechanizmem zmienności biologicznej jest powolna kumulacja losowych mutacji punktowych, należy teraz dołączyć nowe dane oraz koncepcje symbiozy, duplikacji genu, horyzontalnego transferu genów, retrotranspozycji, epigenetycznych sieci kontrolnych, tworzenia nisz, mutacji warunkowanych środowiskowo i wielkoskalowej reinżynierii genomu w odpowiedzi na bodźce środowiskowe. Otwarcie myśli ewolucjonistycznej na szersze i bardziej ekscytujące spojrzenie na wielką teorię Darwina może nieść konsekwencje dla wiary chrześcijańskiej.

Pobrania

Brak dostęþnych danych do wyświetlenia.

Bibliografia

  1. Alexander Denis, „Made in the Image of God: Human Values and Genomics”, BioLogos 15 January 2013, https://biologos.org/blogs/archive/made-in-the-image-of-god-human-values-and-genomics (23.08.2018).
    Zobacz w Google Scholar
  2. Alsmark U. Cecilia et al., „Horizontal Gene Transfer in Eukaryotic Parasites: A Case Study of Entamoeba histolytica and Trichomonas vaginalis”, Methods in Molecular Biology 2009, vol. 532, s. 489-500.
    Zobacz w Google Scholar
  3. Aoki Kenichi, „A Stochastic Model of Gene-Culture Coevolution Suggested by the «Culture Historical Hypothesis» for the Evolution of Adult Lactose Absorption in Humans”, Proceedings of the National Academy of Sciences in the United States 1986, vol. 83, no. 9, s. 2929-2933.
    Zobacz w Google Scholar
  4. Ayala Francisco J., „Teleological Explanations in Evolutionary Biology”, Philosophy of Science 1970, vol. 37, no. 1, s. 1-15.
    Zobacz w Google Scholar
  5. Boto Luis, „Horizontal Gene Transfer in Evolution: Facts and Challenges”, Proceedings of the Royal Society B 2010, vol. 277, no. 1683, s. 819-827.
    Zobacz w Google Scholar
  6. Bradic Martina, Teotónio Henrique, and Borowsky Richard, „The Population Genomics of Repeated Evolution in the Blind Cavefish Astyanax mexicanus”, Molecular Biology and Evolution 2013, vol. 30, no. 11, s. 2383-2400.
    Zobacz w Google Scholar
  7. Cairns John, Overbaugh Julie, and Miller Stephan, „The Origin of Mutants”, Nature 1998, vol. 335, s. 142-145.
    Zobacz w Google Scholar
  8. Carbone Lucia et al., „Gibbon Genome and the Fast Karyotype Evolution of Small Apes”, Nature 2014, vol. 513, no. 7517, s. 195-201.
    Zobacz w Google Scholar
  9. Carroll Sean, Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom, W.W. Norton & Company, New York 2005.
    Zobacz w Google Scholar
  10. Chirat Régis et al., „Mechanical Basis of Morphogenesis and Convergent Evolution of Spiny Seashells”, Proceedings of the National Academy of Sciences in the United States 2013, vol. 110, no. 15, s. 6015-6020.
    Zobacz w Google Scholar
  11. Choo Siew Woh and Russell Steven, „Genomic Approaches to Understanding Hox Gene Function”, Advances in Genetics 2011, vol. 76, s. 55-91.
    Zobacz w Google Scholar
  12. Coate Jeremy E. and Doyle Jeff J., „Divergent Evolutionary Fates of Major Photosynthetic Gene Networks Following Gene and Whole Genome Duplications”, Plant Signaling and Behavior 2011, vol. 6, no. 4, s. 594-597.
    Zobacz w Google Scholar
  13. Conway Morris Simon, Life’s Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, New York 2008.
    Zobacz w Google Scholar
  14. Cordaux Richard and Batzer Mark A., „The Impact of Retrotransposons on Human Genome Evolution”, Nature Reviews Genetics 2009, vol. 10, no. 10, s. 691-703.
    Zobacz w Google Scholar
  15. Croll Donald A. et al., „Introduced Predators Transform Subarctic Islands from Grassland to Tundra”, Science 2005, vol. 307, no. 5717, s. 1959-1961.
    Zobacz w Google Scholar
  16. Da Lage Jean-Luc, Feller Georges, and Janecek Stefan, „Horizontal Gene Transfer from Eukarya to Bacteria and Domain Shuffling: The Alpha-Amylase Model”, Cellular and Molecular Life Sciences 2004, vol. 61, no. 1, s. 97-109.
    Zobacz w Google Scholar
  17. Darwin Karol, O powstawaniu gatunków drogą doboru naturalnego, czyli o utrzymaniu się doskonalszych ras w walce o byt, tekst polski na podstawie przekładu Szymona Dicksteina i Józefa Nusbauma opracowały Joanna Popiołek i Małgorzata Yamazaki, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009.
    Zobacz w Google Scholar
  18. Dawkins Richard, Samolubny gen, przeł. Marek Skoneczny, Na Ścieżkach Nauki, Prószyński i S-ka, Warszawa 1996.
    Zobacz w Google Scholar
  19. Dehal Paramvir and Boore Jeffrey L., „Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate”, PLoS Biology 2005, vol. 3, no. 10, E314.
    Zobacz w Google Scholar
  20. De Mendoza Alex et al., „Transcription Factor Evolution in Eukaryotes and the Assembly of the Regulatory Toolkit in Multicellular Lineages”, Proceedings of the National Academy of Sciences in the United States 2013, vol. 110, no. 50, E4858-E4866.
    Zobacz w Google Scholar
  21. Edelmann Jonathan B. and Denton Michael J., „The Uniqueness of Biological Self-Organization: Challenging the Darwinian Paradigm”, Biology and Philosophy 2007, vol. 22, no. 4, s. 579-601.
    Zobacz w Google Scholar
  22. Ettensohn Charles A., „Lessons from a Gene Regulatory Network: Echinoderm Skeletogenesis Provides Insights into Evolution, Plasticity and Morphogenesis”, Development 2009, vol. 136, s. 11-21.
    Zobacz w Google Scholar
  23. Farkash Evan A. and Luning Prak Eline T., „DNA Damage and L1 Retrotransposition”, Journal of Biomedicine and Biotechnology 2006, no. 1, 37285.
    Zobacz w Google Scholar
  24. Ferg Marco et al., „Gene Transcription in the Zebrafish Embryo: Regulators and Networks”, Briefings in Functional Genomics 2014, vol. 13, no. 2, s. 131-143.
    Zobacz w Google Scholar
  25. Fisher Shannon and Franz-Odendaal Tamara, „Evolution of the Bone Gene Regulatory Network”, Current Opinion in Genetics and Development 2012, vol. 22, no. 4, s. 390-397.
    Zobacz w Google Scholar
  26. Foster Patricia L., „Mechanisms of Stationary Phase Mutation: A Decade of Adaptive Mutation”, Annual Review of Genetics 1999, vol. 33, s. 57-88.
    Zobacz w Google Scholar
  27. Frankel Nicolás, Wang Shu, and Stern David L., „Conserved Regulatory Architecture Underlies Parallel Genetic Changes and Convergent Phenotypic Evolution”, Proceedings of the National Academy of Sciences in the United States 2012, vol. 109, no. 51, s. 20975-20779.
    Zobacz w Google Scholar
  28. Gallant Jason R. et al., „Genomic Basis for the Convergent Evolution of Electric Organs”, Science 2014, vol. 344, no. 6191, s. 1522-1525.
    Zobacz w Google Scholar
  29. Gehrke Andrew R. et al., „Deep Conservation of Wrist and Digit Enhancers in Fish”, Proceedings of the National Academy of Sciences in the United States 2015, vol. 112, no. 3, s. 803-808.
    Zobacz w Google Scholar
  30. Gerstein Mark B. et al., „Architecture of the Human Regulatory Network Derived from Encode Data”, Nature 2012, vol. 489, no. 7414, s. 91-100.
    Zobacz w Google Scholar
  31. Gould Stephen Jay, „Tempo and Mode in the Macroevolutionary Reconstruction of Darwinism”, Proceedings of the National Academy of Sciences of the United States 1994, vol. 91, s. 6764-6771.
    Zobacz w Google Scholar
  32. Hill Kim, Barton Michael, and Hurtado A. Magdalena, „The Emergence of Human Uniqueness: Characters Underlying Behavioral Modernity”, Evolutionary Anthropology 2009, vol. 18, no. 5, s. 187-200.
    Zobacz w Google Scholar
  33. Hinman Veronica F. and Cheatle Jarvela Alys Marie, „Developmental Gene Regulatory Network Evolution: Insights from Comparative Studies in Echinoderms”, Genesis 2014, vol. 52, no. 3, s. 193-207.
    Zobacz w Google Scholar
  34. Hinman Veronica F., Yankura Kristen A., and McCauley Brenna S., „Evolution of Gene Regulatory Network Architectures: Examples of Subcircuit Conservation and Plasticity Between Classes of Echinoderms”, Biochimica et Biophysica Acta 2009, vol. 1789, no. 4, s. 326-332.
    Zobacz w Google Scholar
  35. Ho Mae-Wan and Saunders Peter T., „Beyond Neo-Darwinism — An Epigenetic Approach to Evolution”, Journal of Theoretical Biology 1979, vol. 78, no. 4, s. 573-591.
    Zobacz w Google Scholar
  36. Hufton Andrew L. et al., „Early Vertebrate Whole Genome Duplications Were Predated by a Period of Intense Genome Rearrangement”, Genome Research 2008, vol. 18, no. 10, s. 1582-1591.
    Zobacz w Google Scholar
  37. Jablonka Eva and Raz Gal, „Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution”, The Quarterly Review of Biology 2009, vol. 84, no. 2, s. 131-176.
    Zobacz w Google Scholar
  38. Jackson Daniel J. et al., „A Horizontal Gene Transfer Supported the Evolution of an Early Metazoan Biomineralization Strategy”, BMC Evolutionary Biology 2011, vol. 11, s. 238-244.
    Zobacz w Google Scholar
  39. Jaillon Olivier et al., „Genome Duplication in the Teleost Fish Tetraodon Nigroviridis Reveals the Early Vertebrate Proto-Karyotype”, Nature 2004, vol. 431, no. 7011, s. 946-957.
    Zobacz w Google Scholar
  40. Jones Clive G., Lawton John H., and Shachak Moshe, „Positive and Negative Effects of Organisms as Physical Ecosystem Engineers”, Ecology 1997, vol. 78, no. 7, s. 1946-1957.
    Zobacz w Google Scholar
  41. Kimura Motoo, „Preponderance of Synonymous Changes as Evidence for the Neutral Theory of Molecular Evolution”, Nature 1977, vol. 267, no. 5608, s. 275-276.
    Zobacz w Google Scholar
  42. Koonin Eugene V., „Towards a Postmodern Synthesis of Evolutionary Biology”, Cell Cycle 2009, vol. 8, no. 6, s. 799-800.
    Zobacz w Google Scholar
  43. Koonin Eugene V. and Dolja Valerian V., „A Virocentric Perspective on the Evolution of Life”, Current Opinion in Virology 2013, vol. 3, no. 5, s. 546-557.
    Zobacz w Google Scholar
  44. Laland Kevin N. et al., „Does Evolutionary Theory Need a Rethink?: Researchers Are Divided Over What Processes Should Be Considered Fundamental”, Nature 2014, vol. 514, no. 7521, s. 161-164.
    Zobacz w Google Scholar
  45. Laland Kevin N., Odling-Smee F. John, Feldman Marcus W., and Kendal Jeremy, „Conceptual Barriers to Progress within Evolutionary Biology”, Foundations of Science 2009, vol. 14, no. 3, s. 195-216.
    Zobacz w Google Scholar
  46. Laland Kevin N., Odling-Smee F. John, Hoppitt William, and Uller Tobias, „More on How and Why: Cause and Effect in Biology Revisited”, Biology and Philosophy 2013, vol. 28, no. 5, s. 719-745.
    Zobacz w Google Scholar
  47. Luria Salvador E. and Delbrück Max, „Mutations of Bacteria from Virus Sensitivity to Virus Resistance”, Genetics 1943, vol. 28, no. 6, s. 491-511.
    Zobacz w Google Scholar
  48. Maeso Ignacio et al., „Deep Conservation of Cis-Regulatory Elements in Metazoans”, Philosophical Transactions of the Royal Society B: Biological Sciences 2013, vol. 368, no. 1632, doi:1098/rstb.2013.0020.
    Zobacz w Google Scholar
  49. McGrath Alister, Darwinism and the Divine: Evolutionary Thought and Natural Theology, Wiley-Blackwell, Oxford 2011.
    Zobacz w Google Scholar
  50. Miller Keith B. (ed.), Perspectives on an Evolving Creation, William B. Eerdmans, Grand Rapids, Michigan 2003.
    Zobacz w Google Scholar
  51. Müller Gerd B., „Evo-Devo: Extending the Evolutionary Synthesis”, Nature Reviews Genetics 2007, vol. 8, s. 943-949.
    Zobacz w Google Scholar
  52. Noble Denis, „Central Tenets of Neo-Darwinism Broken: Response to «Neo-Darwinism Is Just Fine»”, Journal of Experimental Biology 2015, vol. 218, s. 2659.
    Zobacz w Google Scholar
  53. Noble Denis, „Neo-Darwinism, the Modern Synthesis and Selfish Genes: Are They of Use in Physiology?”, The Journal of Physiology 2011, vol. 589, no. 5, s. 1007-1015.
    Zobacz w Google Scholar
  54. Odling-Smee F. John, Laland Kevin N., and Feldman Marcus W., Niche Construction: The Neglected Process in Evolution, Princeton University Press, Princeton, New Jersey 2003.
    Zobacz w Google Scholar
  55. Parker Joe et al., „Genome-Wide Signatures of Convergent Evolution in Echolocating Mammals”, Nature 2013, vol. 502, no. 7470, s. 228-231.
    Zobacz w Google Scholar
  56. Pigliucci Massimo, „Do We Need an Extended Evolutionary Synthesis?”, Evolution 2007, vol. 61, s. 2743-2749.
    Zobacz w Google Scholar
  57. Rose Michael R. and Oakley Todd H., „The New Biology: Beyond the Modern Synthesis”, Biology Direct 2007, vol. 2, no. 30.
    Zobacz w Google Scholar
  58. Rosenberg Susan M., „Evolving Responsively: Adaptive Mutation”, Nature Reviews Genetics 2001, vol. 2, no. 7, s. 504-515.
    Zobacz w Google Scholar
  59. Rosenberg Susan M. and Queitsch Christine, „Combating Evolution to Fight Disease”, Science 2014, vol. 343, no. 6175, s. 1088-1089.
    Zobacz w Google Scholar
  60. Roy Siddhartha and Kundu Tapas K., „Gene Regulatory Networks and Epigenetic Modifications in Cell Differentiation”, IUBMB Life 2014, vol. 66, no. 2, s. 100-109.
    Zobacz w Google Scholar
  61. Saier Milton H., Jr., „Did Adaptive and Directed Mutation Evolve to Accelerate Stress-Induced Evolutionary Change?”, Journal of Molecular Microbiology and Biotechnology 2011, vol. 21, no. 1-2, s. 5-7.
    Zobacz w Google Scholar
  62. Shapiro James A., „A 21st Century View of Evolution: Genome System Architecture, Repetitive DNA, and Natural Genetic Engineering”, Gene 2005, vol. 345, s. 91-100.
    Zobacz w Google Scholar
  63. Shapiro James A., „How Life Changes Itself: The Read-Write (RW) Genome”, Physics of Life Reviews 2013, vol. 10, no. 3, s. 287-323.
    Zobacz w Google Scholar
  64. Shapiro James A., „Revisiting the Central Dogma in the 21st Century”, Annals of the New York Academy of Sciences 2009, vol. 1178, s. 6-28.
    Zobacz w Google Scholar
  65. Skinner Michael K., „Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept That Facilitates Neo-Darwinian Evolution”, Genome Biology and Evolution 2015, vol. 7, no. 5, s. 1296-1302.
    Zobacz w Google Scholar
  66. Streit Andrea et al., „Experimental Approaches for Gene Regulatory Network Construction: The Chick as a Model System”, Genesis 2013, vol. 51, no. 5, s. 296-310.
    Zobacz w Google Scholar
  67. The Third Way: Evolution in the Era of Genomics and Epigenomics, http://www.thethirdwayofevolution.com/ (23.08.2018).
    Zobacz w Google Scholar
  68. Wagner Andreas, Arrival of the Fittest: Solving Evolution’s Greatest Puzzle, Penguin Random House, New York 2014.
    Zobacz w Google Scholar
  69. Whitfield John, „Biological Theory: Postmodern Evolution?”, Nature 2008, vol. 455, s. 281-284.
    Zobacz w Google Scholar
  70. Woltering Joost M., „From Lizard to Snake: Behind the Evolution of an Extreme Body Plan”, Current Genomics 2012, vol. 13, no. 4, s. 289-299.
    Zobacz w Google Scholar
  71. Wright Barbara E., „Stress-Directed Adaptive Mutations and Evolution”, Molecular Microbiology 2004, vol. 52, no. 3, s. 643-650.
    Zobacz w Google Scholar
  72. Xing Jinchuan et al., „Emergence of Primate Genes by Retrotransposon-Mediated Sequence Transduction”, Proceedings of the National Academy of Sciences of the United States 2006, vol. 103, no. 47, s. 17608-17613.
    Zobacz w Google Scholar
  73. Yang Shuang et al., „Repetitive Element-Mediated Recombination as a Mechanism for New Gene Origination in Drosophila”, PLoS Genetics 2008, vol. 4, s. 78-87.
    Zobacz w Google Scholar
  74. Zhang GuangJun and Cohn Martin J., „Genome Duplication and the Origin of the Vertebrate Skeleton”, Current Opinion in Genetics and Development 2008, vol. 18, no. 4, s. 387-393.
    Zobacz w Google Scholar
  75. Zhang Zhongge and Saier Milton H., Jr., „Transposon-Mediated Adaptive and Directed Mutations and Their Potential Evolutionary Benefits”, Journal of Molecular Microbiology and Biotechnology 2011, vol. 21, no. 1-2, s. 59-70.
    Zobacz w Google Scholar