Tom 15 (2018)
Przekłady

Dlaczego rozszerzona synteza ewolucyjna jest niezbędna

Opublikowane 25.05.2021

Słowa kluczowe

  • biologia ewolucyjna,
  • nowoczesna synteza,
  • rozszerzona synteza,
  • ewolucyjna biologia rozwoju,
  • tworzenie nisz,
  • biologia systemowa
  • ...więcej
    mniej

Jak cytować

Müller G.B., Dlaczego rozszerzona synteza ewolucyjna jest niezbędna, Filozoficzne Aspekty Genezy, 2021, t. 15, s. 371-413, https://doi.org/10.53763/fag.2018.15.155

Abstrakt

Od czasu powstania ostatniej wielkiej unifikacji biologii ewolucyjnej — nowoczesnej syntezy, utworzonej w latach czterdziestych dwudziestego wieku — odnotowano znaczący rozwój nauk biologicznych. Ogromu nowej wiedzy o czynnikach odpowiedzialnych za zmianę ewolucyjną dostarczyły między innymi biologia molekularna i ewolucyjna biologia rozwoju, koncepcje uwzględniające rozwój ekologiczny, tworzenie nisz oraz wielość systemów dziedziczenia, rewolucja „-omik”, a także biologia systemowa. Część odkryć dokonanych w ramach tych koncepcji i dziedzin jest zgodna z teorią standardową, ale inne ustalenia wskazują na niespójne z nią cechy procesu ewolucji. Celem nowej, rozszerzonej syntezy teoretycznej, za którą opowiadają się niektórzy biologowie, jest zunifikowanie stosownych koncepcji formułowanych na gruncie nowych dziedzin badań z elementami teorii standardowej. Stworzona w ten sposób rama teoretyczna różni się od ujęcia standardowego swoją podstawową logiką i mocą predykcyjną. Podczas gdy teoretyczna warstwa nowoczesnej syntezy (wliczając w to również jej korekty) koncentruje się na genetycznej i adaptacyjnej zmienności w populacjach, rozszerzona rama pojęciowa kładzie nacisk na rolę procesów twórczych, interakcji ekologicznych i dynamiki systemowej w ewolucji złożoności organizmów, jak również na jej uwarunkowania społeczne i kulturowe. Przyczynowość jednopoziomową i jednostronną zastąpiono przyczynowością wielopoziomową i dwustronną. Rozszerzona rama pojęciowa przezwycięża między innymi ograniczenia tradycyjnego, genocentrycznego sposobu wyjaśniania i oferuje nowe spojrzenie na rolę doboru naturalnego w procesie ewolucji. Dzięki temu inspiruje badania w nowych obszarach biologii ewolucyjnej.

Pobrania

Brak dostęþnych danych do wyświetlenia.

Bibliografia

  1. Alberch Pere, Gould Stephen Jay, Oster George F., and Wake David B., „Size and Shape in Ontogeny and Phylogeny”, Paleobiology 1979, vol. 5, s. 296-317, doi:10.1017/S0094837300006588.
    Zobacz w Google Scholar
  2. Arnold Michael L., Evolution through Genetic Exchange, Oxford University Press, Oxford, UK 2006.
    Zobacz w Google Scholar
  3. Ayala Francisco J. and ARP Robert (eds.), Contemporary Debates in Philosophy of Biology, Blackwell Publishing Ltd., Hoboken 2010.
    Zobacz w Google Scholar
  4. Badyaev Alexander V., „Origin of the Fittest: Link Between Emergent Variation and Evolutionary Change as a Critical Question in Evolutionary Biology”, Proceedings of the Royal Society B 2011, vol. 278, s. 1921-1929, doi:10.1098/rspb.2011.0548.
    Zobacz w Google Scholar
  5. Badyaev Alexander V., „Stress-Induced Variation in Evolution: From Behavioural Plasticity to Genetic Assimilation”, Proceedings of the Royal Society B 2005, vol. 272, s. 877-886, doi:10.1098/rspb.2004.3045.
    Zobacz w Google Scholar
  6. Badyaev Alexander V. and OH Kevin P., „Environmental Induction and Phenotypic Retention of Adaptive Maternal Effects”, BMC Evolutionary Biology 2008, vol. 8, s. 3-10, doi:10.1186/1471-2148-8-3.
    Zobacz w Google Scholar
  7. Bateson Patrick, „New Thinking About Biological Evolution”, Biological Journal of the Linnean Society 2014, vol. 112, s. 268-275, doi:10.1111/bij.12125.
    Zobacz w Google Scholar
  8. Bateson Patrick and Gluckman Peter, Plasticity, Robustness, Development and Evolution, Cambridge University Press, Cambridge, UK 2011.
    Zobacz w Google Scholar
  9. Beatty John, „The Synthesis and the Synthetic Theory”, w: Bechtel (ed.), Integrating Scientific Disciplines…, s. 125-135.
    Zobacz w Google Scholar
  10. Bechtel William (ed.), Integrating Scientific Disciplines, Springer, Dordrecht, The Netherlands 1986.
    Zobacz w Google Scholar
  11. Blute Marion, „Modes of Variation and Their Implications for an Extended Evolutionary Synthesis”, w: Turner, Machalek, and Maryanski (eds.), Handbook on Evolution…, s. 59-75.
    Zobacz w Google Scholar
  12. Bonner John Tyler (ed.), Evolution and Development, Springer, Berlin, Germany 1982.
    Zobacz w Google Scholar
  13. Brakefield Paul M., „Evo-Devo and Constraints on Selection”, Trends in Ecology and Evolution 2006, vol. 21, s. 362-368, doi:10.1016/j.tree.2006.05.001.
    Zobacz w Google Scholar
  14. Brakefield Paul M., „The Power of Evo-Devo to Explore Evolutionary Constraints: Experiments with Butterfly Eyespots”, Zoology 2003, vol. 106, s. 283-290, doi:10.1078/0944-2006-00124.
    Zobacz w Google Scholar
  15. Brooks Daniel R., „The Extended Synthesis: The Law of the Conditions of Existence”, Evolution: Education and Outreach 2011, vol. 4, s. 254-261, doi:10.1007/s12052-011-0328-3.
    Zobacz w Google Scholar
  16. Chalub Fabio A.C.C. and Rodrigues José Francisco (eds.), The Mathematics of Darwin’s Legacy, Birkhauser, Basel 2011.
    Zobacz w Google Scholar
  17. Craig Lindsay R., „The So-Called Extended Synthesis and Population Genetics”, Biological Theory 2010, vol. 5, s. 117-123, doi:10.1162/BIOT_a_00035.
    Zobacz w Google Scholar
  18. Danchin Étienne, Charmantier Anne, Champagne Frances A., Mesoudi Alex, Pujol Benoit, and Blanchet Simon, „Beyond DNA: Integrating Inclusive Inheritance into an Extended Theory of Evolution”, Nature Reviews Genetics 2011, vol. 12, s. 475-486, doi:10.1038/nrg3028.
    Zobacz w Google Scholar
  19. Danieli Gian Antonio, Minelli Alessandro, and Pievani Telmo (eds.), Stephen Jay Gould: The Scientific Legacy, Springer, Berlin, Germany 2013.
    Zobacz w Google Scholar
  20. Darwin Karol, O powstawaniu gatunków drogą doboru naturalnego, czyli o utrzymaniu się doskonalszych ras w walce o byt, tekst polski na podstawie przekładu Szymona Dicksteina i Józefa Nusbauma opracowały Joanna Popiołek i Małgorzata Yamazaki, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009.
    Zobacz w Google Scholar
  21. Delisle Richard G., „What Was Really Synthesized During the Evolutionary Synthesis?: A Historiographic Proposal”, Studies in History and Philosophy of Science C 2011, vol. 42, s. 50-59, doi:10.1016/j.shpsc.2010.11.005.
    Zobacz w Google Scholar
  22. Depew David J., „Adaptation as Process: The Future of Darwinism and the Legacy of Theodosius Dobzhansky”, Studies in History and Philosophy of Science C 2011, vol. 42, s. 89-98, doi:10.1016/j.shpsc.2010.11.006.
    Zobacz w Google Scholar
  23. Dickins Thomas E. and Rahman Qazi, „The Extended Evolutionary Synthesis and the Role of Soft Inheritance in Evolution”, Proceedings of the Royal Society B 2012, vol. 279, s. 2913-2921, doi:10.1098/rspb.2012.0273.
    Zobacz w Google Scholar
  24. Einstein Albert, „Ernst Mach”, w: Einstein, Pisma filozoficzne…, s. 53-60.
    Zobacz w Google Scholar
  25. Einstein Albert, Pisma filozoficzne, przeł. Kazimierz Napiórkowski, Arcydzieła Wielkich Myślicieli, Ediciones Altaya Polska i De Agostini Polska, Warszawa 2001.
    Zobacz w Google Scholar
  26. Eldredge Niles and Gould Stephen Jay, „Punctuated Equilibria: An Alternative to Phyletic Gradualism”, w: Schopf (ed.), Models in Paleobiology…, s. 82-115.
    Zobacz w Google Scholar
  27. Futuyma Douglas J., „Can Modern Evolutionary Theory Explain Macroevolution?”, w: Serelli and Gontier (eds.), Macroevolution…, s. 29-85.
    Zobacz w Google Scholar
  28. Futuyma Douglas J., Ewolucja, przekł. pod red. Jacka Radwana, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2008.
    Zobacz w Google Scholar
  29. Gardner Andy, „The Genetical Theory of Multilevel Selection”, Journal of Evolutionary Biology 2015, vol. 28, s. 305-319, doi:10.1111/jeb.12566.
    Zobacz w Google Scholar
  30. Gerhart John and Kirschner Marc, „The Theory of Facilitated Variation”, Proceedings of the National Academy of Sciences USA 2007, vol. 104 (Supplement 1), s. 8582-8589, doi:10.1073/pnas.0701035104.
    Zobacz w Google Scholar
  31. Gilbert Scott F., „A Holobiont Birth Narrative: The Epigenetic Transmission of the Human Microbiome”, Frontiers in Genetics 2014, vol. 5, no. 282, doi:10.3389/fgene.2014.00282.
    Zobacz w Google Scholar
  32. Goldbeter Albert, „Zero-Order Switches and Developmental Thresholds”, Molecular Systems Biology 2005, vol. 1, E1-E2, doi:10.1038/msb4100042.
    Zobacz w Google Scholar
  33. Goldbeter Albert, Gonze Didier, and Pourquié Olivier, „Sharp Developmental Thresholds Defined through Bistability by Antagonistic Gradients of Retinoic Acid and FGF Signaling”, Developmental Dynamics 2007, vol. 236, s. 1495-1508, doi:10.1002/dvdy.21193.
    Zobacz w Google Scholar
  34. Goodwin Brian C., „Development and Evolution”, Journal of Theoretical Biology 1982, vol. 97, s. 43-55, doi:10.1016/0022-5193(82)90275-2.
    Zobacz w Google Scholar
  35. Gould Stephen Jay, Ontogeny and Phylogeny, The Belknap Press of Harvard University Press, Cambridge, Massachusetts 1977.
    Zobacz w Google Scholar
  36. Gould Stephen Jay, The Structure of Evolutionary Theory, Harvard University Press, Cambridge, Massachusetts 2002.
    Zobacz w Google Scholar
  37. Gould Stephen Jay and Lewontin Richard C., „The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme”, Proceedings of the Royal Society of London B 1979, vol. 205, s. 581-598, doi:10.1098/rspb.1979.0086.
    Zobacz w Google Scholar
  38. Haidle Miriam Noël, Bolus Michael, Collard Mark, Conard Nicholas J., Garofoli Duilio, Lombard Marlize, Nowell April, Tennie Claudio, and Whiten Andrew, „The Nature of Culture: An Eight-Grade Model for the Evolution and Expansion of Cultural Capacities in Hominins and Other Animals”, Journal of Anthropological Sciences 2015, vol. 93, s. 43-70, doi:10.4436/JASS.93011.
    Zobacz w Google Scholar
  39. Huxley Leonard, Life and Letters of Thomas H. Huxley, Cambridge University Press, Cambridge, UK 2011.
    Zobacz w Google Scholar
  40. Jablonka Eva and Lamb Marion J., Evolution in Four Dimensions, MIT Press, Cambridge, Massachusetts 2006.
    Zobacz w Google Scholar
  41. Jablonka Eva and Raz Gal, „Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution”, Quarterly Review of Biology 2009, vol. 84, s. 131-176, doi:10.1086/598822.
    Zobacz w Google Scholar
  42. Jaeger Johannes, Irons David, and Monk Nick, „The Inheritance of Process: A Dynamical Systems Approach”, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2012, vol. 318, s. 591-612, doi:10.1002/jez.b.22468.
    Zobacz w Google Scholar
  43. Keeling Patrick J. and Palmer Jeffrey D., „Horizontal Gene Transfer in Eukaryotic Evolution”, Nature Reviews Genetics 2008, vol. 9, s. 605-618, doi:10.1038/nrg2386.
    Zobacz w Google Scholar
  44. Kohl Peter and Noble Denis, „Systems Biology and the Virtual Physiological Human”, Molecular and Systems Biology 2009, vol. 5, no. 292, doi:10.1038/msb.2009.51.
    Zobacz w Google Scholar
  45. Koonin Eugene V., „Ewolucjonizm darwinowski w świetle genomiki”, przeł. Dariusz Sagan, Filozoficzne Aspekty Genezy 2018, t. 15, s. 1-88, http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2018.t.15/art.03.pdf (10.12.2018).
    Zobacz w Google Scholar
  46. Koonin Eugene V., „The Origin at 150: Is a New Evolutionary Synthesis in Sight?”, Trends in Genetics 2009, vol. 25, s. 473-475, doi:10.1016/j.tig.2009.09.007.
    Zobacz w Google Scholar
  47. Krimsky Sheldon and Gruber Jeremy (eds.), Genetic Explanations: Sense and Nonsense, Harvard University Press, Cambridge, Massachusetts 2013.
    Zobacz w Google Scholar
  48. Kutschera Ulrich and Niklas Karl J., „The Modern Theory of Biological Evolution: An Expanded Synthesis”, Naturwissenschaften 2004, vol. 91, s. 255-276, doi:10.1007/s00114-004-0515-y.
    Zobacz w Google Scholar
  49. Laland Kevin N., Odling-Smee John, and Feldman Marc W., „Evolutionary Consequences of Niche Construction and Their Implications for Ecology”, Proceedings of the National Academy of Sciences USA 1999, vol. 96, s. 10242-10247, doi:10.1073/pnas.96.18.10242.
    Zobacz w Google Scholar
  50. Laland Kevin N., Odling-Smee John, and Myles Sean, „How Culture Shaped the Human Genome: Bringing Genetics and the Human Sciences Together”, Nature Reviews Genetics 2010, vol. 11, s. 137-148, doi:10.1038/nrg2734.
    Zobacz w Google Scholar
  51. Laland Kevin N., Uller Tobias, Feldman Marc W., Sterelny Kim, Müller Gerd B., Moczek Armin, Jablonka Eva, and Odling-Smee John, „Does Evolutionary Theory Need a Rethink?: Yes, Urgently”, Nature 2014, vol. 514, s. 161-164, doi:10.1038/514161a.
    Zobacz w Google Scholar
  52. Laland Kevin N., Uller Tobias, Feldman Marc W., Sterelny Kim, Müller Gerd B., Moczek Armin, Jablonka Eva, and Odling-Smee John, „The Extended Evolutionary Synthesis: Its Structure, Assumptions and Predictions”, Proceedings of the Royal Society B 2015, vol. 282, no. 1813, s. 1-14, doi:10.1098/rspb.2015.1019.
    Zobacz w Google Scholar
  53. Lande Russell, „Adaptation to an Extraordinary Environment by Evolution of Phenotypic Plasticity and Genetic Assimilation”, Journal of Evolutionary Biology 2009, vol. 22, s. 1435-1446, doi:10.1111/j.1420-9101.2009.01754.x.
    Zobacz w Google Scholar
  54. Lange Axel, Nemeschkal Hans L., and Müller Gerd B., „Biased Polyphenism in Polydactylous Cats Carrying a Single Point Mutation: The Hemingway Model for Digit Novelty”, Evolutionary Biology 2014, vol. 41, s. 262-275, doi:10.1007/s11692-013-9267-y.
    Zobacz w Google Scholar
  55. Laubichler Manfred D., „Evolutionary Developmental Biology Offers a Significant Challenge to Neo-Darwinian Paradigm”, w: Ayala and ARP (eds.), Contemporary Debates…, s. 199-212.
    Zobacz w Google Scholar
  56. Laubichler Manfred D. and Renn Jürgen, „Extended Evolution: A Conceptual Framework for Integrating Regulatory Networks and Niche Construction”, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2015, vol. 324, s. 565-577, doi:10.1002/jez.b.22631.
    Zobacz w Google Scholar
  57. López-Maury Luis, Marguerat Samuel, and Bähler Jürg, „Tuning Gene Expression to Changing Environments: From Rapid Responses to Evolutionary Adaptation”, Nature Reviews Genetics 2008, vol. 9, s. 583-593, doi:10.1038/nrg2398.
    Zobacz w Google Scholar
  58. Love Alan C. and Raff Rudolf A., „Larval Ectoderm, Organizational Homology, and the Origins of Evolutionary Novelty”, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2006, vol. 306B, s. 18-34, doi:10.1002/jez.b.21064.
    Zobacz w Google Scholar
  59. Lynch Michael, „The Frailty of Adaptive Hypotheses for the Origins of Organismal Complexity”, Proceedings of the National Academy of Sciences USA 2007, vol. 104 (Supplement 1), s. 8597-8604, doi:10.1073/pnas.0702207104.
    Zobacz w Google Scholar
  60. Maynard-Smith John, Burian Richard, Kauffman Stuart A., Alberch Pere, Campbell John H., Goodwin Brian C., Lande Russell, Raup David M., and Wolpert Lewis, „Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution”, Quarterly Review of Biology 1985, vol. 60, s. 265-287, doi:10.1086/414425.
    Zobacz w Google Scholar
  61. Mcghee George R., Jr., Convergent Evolution, MIT Press, Cambridge, Massachusetts 2011.
    Zobacz w Google Scholar
  62. Mesoudi Alex et al., „Is Non-Genetic Inheritance Just a Proximate Mechanism?: A Corroboration of the Extended Evolutionary Synthesis”, Biological Theory 2013, vol. 7, s. 189-195, doi:10.1007/s13752-013-0091-5.
    Zobacz w Google Scholar
  63. Metz J.A.J. Hans, „Thoughts on the Geometry of Meso-Evolution: Collecting Mathematical Elements for a Post-Modern Synthesis”, w: Chalub and RODRIGUES (eds.), The Mathematics of Darwin’s Legacy…, s. 193-231.
    Zobacz w Google Scholar
  64. MINELLI Alessandro, „Molecules, Developmental Modules, and Phenotypes: A Combinatorial Approach to Homology”, Molecular Phylogenetics and Evolution 1998, vol. 9, s. 340-347, doi:10.1006/mpev.1997.0490.
    Zobacz w Google Scholar
  65. Moczek Armin P., „Evolutionary Biology: The Origins of Novelty”, Nature 2011, vol. 473, s. 34-35, doi:10.1038/473034a.
    Zobacz w Google Scholar
  66. Moczek Armin P., Sultan Sonia, Foster Susan, Ledón-Rettig Cris, Dworkin Ian, Nijhout H. Fred, Abouheif Ehab, and Pfennig David W., „The Role of Developmental Plasticity in Evolutionary Innovation”, Proceedings of the Royal Society B 2011, vol. 278, s. 2705-2713, doi:10.1098/rspb.2011.0971.
    Zobacz w Google Scholar
  67. Morange Michel, „What Will Result from the Interaction Between Functional and Evolutionary Biology?”, Studies in History and Philosophy of Science C 2011, vol. 42, s. 69-74, doi:10.1016/j.shpsc.2010.11.010.
    Zobacz w Google Scholar
  68. Moss Lenny, What Genes Can’t Do, MIT Press, Cambridge, Massachusetts 2004.
    Zobacz w Google Scholar
  69. Müller Gerd B., „Beyond Spandrels: EvoDevo, S.J. Gould, and the Extended Synthesis”, w: Danieli, Minelli, and Pievani (eds.), Stephen Jay Gould…, s. 85-99.
    Zobacz w Google Scholar
  70. Müller Gerd B., „Evo-Devo: Extending the Evolutionary Synthesis”, Nature Reviews Genetics 2007, vol. 8, s. 943-949, doi:10.1038/nrg2219.
    Zobacz w Google Scholar
  71. Newman Stuart A., „Developmental Mechanisms: Putting Genes in Their Place”, Journal of Biosciences 2002, vol. 27, s. 97-104, doi:10.1007/BF02703765.
    Zobacz w Google Scholar
  72. Newman Stuart A., „The Fall and Rise of Systems Biology”, Gene Watch 2003, vol. 16, s. 8-12.
    Zobacz w Google Scholar
  73. Newman Stuart A. and Bhat Ramray, „Activator-Inhibitor Dynamics of Vertebrate Limb Pattern Formation”, Birth Defects Research C 2008, vol. 81, s. 305-319, doi:10.1002/bdrc.20112.
    Zobacz w Google Scholar
  74. Newman Stuart A., Forgacs Gabor, and Müller Gerd B., „Before Programs: The Physical Origination of Multicellular Forms”, International Journal of Developmental Biology 2006, vol. 50, s. 289-299, doi:10.1387/ijdb.052049sn.
    Zobacz w Google Scholar
  75. Newman Stuart A. and Müller Gerd B., „Epigenetic Mechanisms of Character Origination”, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2000, vol. 288, s. 304-317, doi:10.1002/1097-010X(20001215)288:4,304::AIDJEZ3.3.0.CO;2-G.
    Zobacz w Google Scholar
  76. Nicholson Daniel J., „The Return of the Organism as a Fundamental Explanatory Concept in Biology”, Philosophy Compass 2014, vol. 9, s. 347-359, doi:10.1111/phc3.12128.
    Zobacz w Google Scholar
  77. Niklas Karl J., Plant Evolution, University of Chicago Press, Chicago, Illinois 2016.
    Zobacz w Google Scholar
  78. Niklas Karl J., Bondos Sarah E., Dunker A. Keith, and Newman Stuart A., „Rethinking Gene Regulatory Networks in Light of Alternative Splicing, Intrinsically Disordered Protein Domains, and Post-Translational Modifications”, Frontiers in Cell and Developmental Biology 2015, vol. 3, no. 8, doi:10.3389/fcell.2015.00008.
    Zobacz w Google Scholar
  79. Noble Denis, „Biophysics and Systems Biology”, Philosophical Transactions of the Royal Society A 2010, vol. 368, s. 1125-1139, doi:10.1098/rsta.2009.0245.
    Zobacz w Google Scholar
  80. Noble Denis, „Neo-Darwinism, the Modern Synthesis and Selfish Genes: Are They of Use in Physiology?”, Journal of Physiology 2011, vol. 589, s. 1007-1015, doi:10.1113/jphysiol.2010.201384.
    Zobacz w Google Scholar
  81. Noble Denis, „Physiology Is Rocking the Foundations of Evolutionary Biology”, Experimental Physiology 2013, vol. 98, s. 1235-1243, doi:10.1113/expphysiol.2012.071134.
    Zobacz w Google Scholar
  82. O’Brien Michael J. and Shennan Stephen J., Innovation in Cultural Systems, MIT Press, Cambridge, Massachusetts 2010.
    Zobacz w Google Scholar
  83. Odling-Smee John, Laland Kevin N., and Feldman Marcus W., Niche Construction, Princeton University Press, Princeton, New Jersey 2003.
    Zobacz w Google Scholar
  84. Okasha Samir, Evolution and the Levels of Selection, Oxford University Press, Oxford, UK 2008.
    Zobacz w Google Scholar
  85. Peterson Tim and Müller Gerd B., „Phenotypic Novelty in Evo-Devo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Evolutionary Theory”, Evolutionary Biology 2016, vol. 43, s. 314-335, doi:10.1007/s11692-016-9372-9.
    Zobacz w Google Scholar
  86. Pievani Telmo, „How to Rethink Evolutionary Theory: A Plurality of Evolutionary Patterns”, Evolutionary Biology 2016, vol. 43, s. 446-455, doi:10.1007/s11692-015-9338-3.
    Zobacz w Google Scholar
  87. Pigliucci Massimo, „Do We Need an Extended Evolutionary Synthesis?”, Evolution 2007, vol. 61, s. 2743-2749, doi:10.1111/j.1558-5646.2007.00246.x.
    Zobacz w Google Scholar
  88. Pigliucci Massimo, Phenotypic Plasticity: Beyond Nature and Nurture, Johns Hopkins University Press, Baltimore, Maryland 2001.
    Zobacz w Google Scholar
  89. Pigliucci Massimo and Müller Gerd B., „Elements of an Extended Evolutionary Synthesis”, w: Pigliucci and Müller (eds.), Evolution…, s. 3-17.
    Zobacz w Google Scholar
  90. Pigliucci Massimo and Müller Gerd B. (eds.), Evolution — The Extended Synthesis, MIT Press, Cambridge, Massachusetts 2010.
    Zobacz w Google Scholar
  91. Prentiss Anna Marie, Kuijt Ian, and Chatters James C. (eds.), Macroevolution in Human Prehistory, Springer, New York 2009.
    Zobacz w Google Scholar
  92. Psujek Sean and Beer Randall D., „Developmental Bias in Evolution: Evolutionary Accessibility of Phenotypes in a Model Evo-Devo System”, Evolution and Development 2008, vol. 10, s. 375-390, doi:10.1111/j.1525-142X.2008.00245.x.
    Zobacz w Google Scholar
  93. Rankin Catharine H., „A Review of Transgenerational Epigenetics for RNAi, Longevity, Germline Maintenance and Olfactory Imprinting in Caenorhabditis elegans”, Journal of Experimental Biology 2015, vol. 218, s. 41-49, doi:10.1242/jeb.108340.
    Zobacz w Google Scholar
  94. Remy Jean-Jacques, „Stable Inheritance of an Acquired Behavior in Caenorhabditis elegans”, Current Biology 2010, vol. 20, s. R877-R878, doi:10.1016/j.cub.2010.08.013.
    Zobacz w Google Scholar
  95. Reznick David N. and Ricklefs Robert E., „Darwin’s Bridge Between Microevolution and Macroevolution”, Nature 2009, vol. 457, s. 837-842, doi:10.1038/nature07894.
    Zobacz w Google Scholar
  96. Richards Eric J., „Inherited Epigenetic Variation — Revisiting Soft Inheritance”, Nature Reviews Genetics 2006, vol. 7, s. 395-401, doi:10.1038/nrg1834.
    Zobacz w Google Scholar
  97. Riedl Ruppert, Order in Living Organisms, John Wiley & Sons, Chichester, UK 1978.
    Zobacz w Google Scholar
  98. Salazar-Ciudad Isaac and Jernvall Jukka, „A Gene Network Model Accounting for Development and Evolution of Mammalian Teeth”, Proceedings of the National Academy of Sciences USA 2002, vol. 99, s. 8116-8120, doi:10.1073/pnas.132069499.
    Zobacz w Google Scholar
  99. Salazar-Ciudad Isaac, Solé Ricard V., and Newman Stuart A., „Phenotypic and Dynamical Transitions in Model Genetic Networks II: Application to the Evolution of Segmentation Mechanisms”, Evolution and Development 2001, vol. 3, s. 95-103, doi:10.1046/j.1525-142x.2001.003002095.x.
    Zobacz w Google Scholar
  100. Schlichting Carl D. and Pigliucci Massimo, Phenotypic Evolution: A Reaction Norm Perspective, Sinauer, Sunderland, Massachusetts 1998.
    Zobacz w Google Scholar
  101. Schopf Thomas J.M. (ed.), Models in Paleobiology, W.H. Freeman and Company, San Francisco, California 1972.
    Zobacz w Google Scholar
  102. Serelli Emanuele and Gontier Nathalie (eds.), Macroevolution, Springer, Cham, Switzerland 2015.
    Zobacz w Google Scholar
  103. Shapiro James A., „A 21st Century View of Evolution: Genome System Architecture, Repetitive DNA, and Natural Genetic Engineering”, Gene 2005, vol. 345, s. 91-100, doi:10.1016/j.gene.2004.11.020.
    Zobacz w Google Scholar
  104. Shapiro James A., Evolution, FT Press, Upper Saddle River, New Jersey 2011.
    Zobacz w Google Scholar
  105. Soen Yoav, Knafo Maor, and Elgart Michael, „A Principle of Organization Which Facilitates Broad Lamarckian-Like Adaptations by Improvisation”, Biology Direct 2015, vol. 10, e68, doi:10.1186/s13062-015-0097-y.
    Zobacz w Google Scholar
  106. Sultan Sonia E., Organism and Environment, Oxford University Press, Oxford, UK 2015.
    Zobacz w Google Scholar
  107. True John R. and Haag Eris S., „Developmental System Drift and Flexibility in Evolutionary Trajectories”, Evolution and Development 2001, vol. 3, s. 109-119, doi:10.1046/j.1525-142x.2001.003002109.x.
    Zobacz w Google Scholar
  108. Turner Jonathan H., Machalek Richard, and Maryanski Alexandra (eds.), Handbook on Evolution and Society Toward an Evolutionary Social Science, Routledge, Abingdon, UK 2014.
    Zobacz w Google Scholar
  109. Uller Tobias, „Developmental Plasticity and the Evolution of Parental Effects”, Trends in Ecology and Evolution 2008, vol. 23, s. 432-438, doi:10.1016/j.tree.2008.04.005.
    Zobacz w Google Scholar
  110. Wagner Günter P., „The Biological Homology Concept”, Annual Review of Ecology and Systematics 1989, vol. 20, s. 51-69, doi:10.1146/annurev.es.20.110189.000411.
    Zobacz w Google Scholar
  111. West-Eberhard Mary Jane, Developmental Plasticity and Evolution, Oxford University Press, Oxford, UK 2003.
    Zobacz w Google Scholar
  112. West-Eberhard Mary Jane, „Phenotypic Accommodation: Adaptive Innovation Due to Developmental Plasticity”, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2005, vol. 304B, s. 610-618, doi:10.1002/jez.b.21071.
    Zobacz w Google Scholar
  113. Whitfield John, „Biological Theory: Postmodern Evolution?”, Nature 2008, vol. 455, s. 281-284, doi:10.1038/455281a.
    Zobacz w Google Scholar
  114. Woese Carl R. and Goldenfeld Nigel, „How the Microbial World Saved Evolution from the Scylla of Molecular Biology and the Charybdis of the Modern Synthesis”, Microbiology and Molecular Biology Reviews 2009, vol. 73, s. 14-21, doi:10.1128/MMBR.00002-09.
    Zobacz w Google Scholar
  115. Wray Gregory A., Hoekstra Hopi E., Futuyma Douglas J., Lenski Richard E., Mackay Trudy F.C., Schluter Dolph, and Strassmann Joan E., „Does Evolutionary Theory Need a Rethink?: No, All Is Well”, Nature 2014, vol. 514, s. 161-164, doi:10.1038/514161a.
    Zobacz w Google Scholar
  116. Zeder Melinda A., „Domestication as a Model System for Niche Construction Theory”, Evolution and Ecology 2016, vol. 30, s. 325-348, doi:10.1007/s10682-015-9801-8.
    Zobacz w Google Scholar
  117. Zeder Melinda A., „Evolutionary Biology and the Emergence of Agriculture: The Value of Co-Opted Models of Evolution in the Study of Culture Change”, w: Prentiss, Kuijt, and Chatters (eds.), Macroevolution…, s. 157-210.
    Zobacz w Google Scholar